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We give a review (and some improvements) of the rigorous results on the phase 
structure of Abelian lattice Higgs models with gauge groups U(1) and ~. 
Emphasis is put on the relation between the Higgs mechanism (gauge-indepen- 
dent) and spontaneous symmetry breaking (gauge-dependent). We also discuss 
some nonperturbative effects due to Gribov copies in this context. 
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1. I N T R O D U C T I O N  

Scalar lattice QED comes basically in two versions: noncompact models 
with gauge group N and compact models with gauge group U(1 ). Although 
it is hoped that both versions should have the same continuum limits, they 
have rather different phase structures, which coincide at most in the weak 
coupling regime. 

In space-time dimension d>~3 the noncompact model is known to 
have two phases. In the Coulomb phase the photon is massless, (~ 3/ while 
in the Higgs phase it acquires a mass. (4t The standard explanation (see, e.g., 
Ref. 5) of this mass generation is based on the assumption that the gauge 
symmetry is broken spontaneously and the vacuum expectation value <~b) 
of the Higgs field is nonzero. 
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It seems that this argument is a persistent source of confusion, since 
Elitzur's theorem (6~ states that local gauge symmetries cannot be broken 
spontaneously. The point is that continuum gauge theories always work 
with gauge-fixing terms, which explicitely break the local gauge invariance, 
and hence Elitzur's theorem does not apply. If, however, the gauge-fixing 
term still is invariant under global gauge transformations, then it is sensible 
to ask under what conditions this global symmetry is broken spon- 
taneously, to what extent this may depend on the gauge fixing, and 
whether this has anything to do with the Higgs mechanism (defined by the 
existence of a mass gap, say). 

The first rigorous result in this direction has been obtained by Ken- 
nedy and King, (7) who considered the noncompact model with (the lattice 
version of), the gauge-fixing term (2~) I(0~AF*)2, where A ~ is the gauge 
potential. For these c~-gauges, as they will be called from now on, they 
showed that in d~<4 the expectation value (~b)= is zero for all e > 0  
independently of the parameters in the Higgs potential and the elec- 
tromagnetic coupling constant e. In Landau gauge, however (which 
corresponds to the limit c~0), they showed (see also Ref. 8) that 
(~)Landau =~ 0 in a region of parameters overlapping with the Higgs phase, 
while it is zero in a region overlapping with the Coulomb phase. 

Thus, for the noncompact model the semiclassical picture seems to be 
correct in Landau gauge, but misleading in all other c~-gauges. Pertur- 
batively this could have been anticipated from a loop expansion of the 
generating functional G(J) of connected Green's functions (in the Higgs 
fields). 3 The derivative ~G/OJ is nothing but the one-point function @ ) .  
On the one-loop level we get (among other terms) a tadpole contribution 
from the Goldstone propagator (k 2) l+c~eRv2(k2) 2, which is infrared- 
divergent in d~<4 unless e is zero (1~1 = v  is the classical value, i.e., the 
minimum of the Higgs potential). 

Hence, the tree approximation I(~)1 = v is unrealiable for ~ > 0, since 
the radiative corrections are infinite. This situation is very analogous to 
two-dimensional spin systems with continuous symmetries. There 
Goldstone tadpole diagrams as in Fig. 1 are always infrared-divergent and 
hence give a sign for the well-known Mermin-Wagner theorem (l~ on the 
absence of spontaneous symmetry breaking (SSB) in these models. 

For the compact U(1) Higgs model the situation is by far not as clear. 
We first note that this model is perfectly well defined without any gauge 
fixing, and gauge-fixed versions are usually not investigated. But then (~b) 

3 In the language of statistical mechanics, G(J) is the Gibbs free energy density [also called 
"pressure" by P(~b)2-theorists] as a function of an external "magnetic" field J coupled to the 
scalar field (b. 
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Fig. 1. Goldstone tadpole contribution to the one-point function. Propagators and vertices 
for the Abelian Higgs model can be found in, e.g., Ref. 9. 

vanishes identically due to Elitzur's theorem. Hence, to compare with the 
noncompact model or with the continuum theory, it is interesting to con- 
sider e-gauges as well. Not too surprisingly it also turns out that the global 
gauge symmetry is never broken, provided c~ > 0 and d~< 4. (12'131 Moreover, 
we now have to deal with the fact that c~-gauges in compact Abelian models 
still suffer from the existence of Gribov copies, (12 151 and hence the methods 
of Kennedy and King to show SSB in Landau gauge do not apply. As a 
special feature, due to the Abelian nature of the model, these Gribov copies 
are related by a subgroup of gauge transformations, which we call Grib. If 
Grib is unbroken, then even the two-point function (dx~bv) vanishes at 
noncoinciding points x r y. 

We would like to point out here that the presence of Gribov copies 
does not invalidate the Faddeev-Popov procedure as long as gauge- 
invariant expectations are considered. (~51 This is also true in perturbation 
theory if one expands about the trivial minimum of the classical action and 
forgets about the Gribov copiesJ 14) But, as has also been argued in Ref. 14, 
the same perturbative procedure is bound to yield incorrect answers con- 
cerning gauge-dependent Green's functions. Indeed, we will report in this 
review on some new results of Ref. 13, where it is shown that in the com- 
pact model even in Landau gauge @ ( x ) )  as well as (q~(x)~b(y)) (for 
x r y) are zero in the strong coupling regime of the confinement/Higgs 
phase. This extends earlier results of Ref. 12 and implies that either 
@)Landau is not a good order parameter or it indicates a phase transition 
where there is none is terms of local gauge-invariant observables. 

We conclude by mentioning some important contributions to the sub- 
ject that had to be left out because of considerations of space. First, we 
apologize for not having given as much appreciation as they deserve to all 
the Monte Carlo results on these models. For an excellent review we refer 
the reader to Ref. 16. Second, we have not discussed issues and order 
parameters concerning the existence of charged states, (j7,~8~ the particle 
structure, (19/ and the Meissner ef fec t ,  (13) all of which seem to be very 
physical and useful characterizations of the phase structure in lattice field 
theory. 
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The organization of this paper is as follows: In Section 2 we present 
what is known rigorously about the phase diagram of the noncompact 
Abelian lattice Higgs model. We show that the gauge-invariant description 
(i.e., via the photon mass) agrees very well with the appearence of SSB in 
Landau gauge. Our theorems are slight improvements of those present in 
the literature. The proofs are deferred to Section 4. Section 3 is devoted to 
the compact Abelian model. We first describe the phase diagram in terms 
of gauge-invariant observables by referring to existing analytical and 
numerical results. Then we summarize what is known about SSB in the 
gauge-fixed model and discuss possible answers to open questions. Finally, 
some technical details concerning Section 4 are given in the appendices. 

2. T H E  N O N C O M P A C T  M O D E L  

In this section we consider the Abelian Higgs model with gauge group 
("the noncompact U(1)"). Our lattice is a finite, open subcomplex (2~ of 

77 d, i.e., consists of a finite set Ao of points in 77 d, the set of nearest neighbor 
pairs (xy)  (also called links or bonds) in Z a, such that at least x or y is in 
A0, the set A2 of plaquettes that contain at least one link in A~, etc. The 
gauge field is a real-valued 1-form on A, i.e., a function (xy)~-+Axy living 
on links (xy)  eA~, with Axy= -Aye. The Higgs field ~b~ lives on points in 
A o and takes values in the complex numbers C. The Higgs field ~b~ is often 
written as Rxd% with q~x e [ - ~ ,  ~) and 0 ~< Rx < oe . An observable in A 
is a complex-valued function of the fields Axy, resp. ~bx, on points, resp. 
links, in A. 

Gauge transformations are given by 

Ax ~, --* A~y = Axy + (d2)xy 

where d denotes the exterior derivative on A, (d2)~y = 2 v - 2 ~ ,  and the 
gauge-transformed observable is defined by 

f;~(A ;~ ~;~)= f(A, r 

The action S A inv cr = SA + SA consists of a gauge-invariant part 

1 
S~, nv = 2  Y~ r (DA'~)~I 2 

( x y ) e A l  

1 
+~e 2 Z F(P) 2+ Z 

p~A2 -:r ~ A0 

v(Ibxj) 
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and the gauge-fixing term 

1 
S~A -- 2c~e2 .~A~ (d*A)2(x) 

Here and in the following, sums (and products) over { x y ) ~  At, resp. 
peA2,  are always meant as sums (and products) over positive-oriented 
links, resp. plaquettes, unless noted otherwise. Ao is the set of all points 
that are attached to at least one bond in A~, F= dA is the electromagnetic 
field strength, d*A is the lattice divergence of A, and DA ~b is the covariant 
derivative of 4); V is the Higgs potential: 

F(p)=(dA)(p)= ~ A~ 
bE~p 

(d*A)(x)= F~ A,.~ 
y : l x - y l  = I 

(DA~b)xy=q~x- [exp( iA>.)]O>. 
V( [~l ) = 2( lfbl 2 - v2) 2 

e 2, ),, and ~ are to be taken nonnegative and v 2 may be negative or positive. 
We fix our boundary conditions by putting A b and <Px to zero 

whenever b ~ A 1 and x q~ A0, respectively. The expectation value of a local 
observable f [i.e., a function f (A,  ~) depending only on finitely many 
variables A ..... and ~bx] is given by 

(f)A,~ ZAI~fDA A D A ~ f e x p ( -  = SAin. ) exp( - S Az~ ) 

The normalization ZA,~ is chosen in such a way that (1)A.~ = 1 and 

DA A= [-[ dAb, DAUb= l~ RxdR~ I~ dPx 
bcAl  x ~ A 0  x ~ A 0  

As a convenient limit of the model just defined, one often considers the 
"fixed-length" version, which is obtained by sending 2 ~ oe and keeping 
v 2 > 0 fixed. In this limit the Higgs field becomes ~b.~ = ve i~~ and the gauge- 
invariant part of the action is 

1 
g~v= --U2 <xy>~A~ c~176 +~J2p~A2F(p)2 
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In the following, A A will denote the lattice Laplacian in the volume A, 
with Dirichlet boundary conditions, and for p-forms f and g, (f, g)A 
stands for the scalar product 

(f, g)A = ~ /(c) g(c) 
cEAp 

I .emma 2.1. (i) Let f be an observable in A transforming under 
gauge transformations according to the irreducible representation q, i.e., 
f x =  {exp[i(q, 2)A] } f  with some function q: Ao--+ ~. Then 

( f  ) A,~ = { e x p [ -  �89 ZI A2q)A] } ( f  ) A,~--O 

In particular, (f)A,~ is independent of c~ for gauge-invariant observables. 

(ii) In dimension d~<4 

(~x)~=0, c~>0 

independently of e 2 and the parameters of the Higgs potential. 

Romark. The statement (ii) was first proven by Kennedy and 
King. (7) The following proof, however, which is taken from Ref. 3, displays 
much more explicitly the ~-dependent spin wave contribution destroying 
long-range order in d~< 4. 

Proof of Lommo 2. I. (i) We consider the unnormalized expectation 
value 

ZA,~,f)A,:~ = f DAA DAOf(A,  ~) 

x e x p  [ inv - S A (A, ~b)] e x p [ -  S~A(d*A)] 

and insert 1 in the form 

1 = d e t  A A f (~(AA2 + d'A)  DA.~ 

Since S] nV is gauge-invariant, we obtain, after a change of variables, 

A--+ A ' = A ~ =  A +d2, O-.~O'_=(~=ei~.q) 

ZA,c~(f)A,~ = det A A f DA)~ DAA' DAO' 6(d*A') 

x f(A')exp[i(q,  2)A] exp[-Si"V(A ', ~b')] 

x exp[ -S~A(d*A ' -  AA2)] 
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where we have used the transformation properties of f and the fact that 
d*d)~ = A A 2. Due to the b-functions, we can drop d*A' in S~. But then the 
integral over 2 factorizes from the rest and we obtain 

( f )A ,~  = ( f ) A , ~ = o Z ~  f DA2 exp[--SA(--AA)-)~ exp[i(q, 2)A] (2.tt)  

with 

Zg.f. = f DA2 exp[--S~(--AA2)]  

The integral in (2.11) is Gaussian and can be evaluated, giving Lem- 
ma 2.1(i). 

(ii) Due to Lemma 2.1(i), 

(~.,c)A,c~ = { e x p [ -  �89 } (~bx)A,~=o 

Since (A 2)x X is infrared-divergent in d~<4 and @~)~-0  is finite due to the 
2q~ 4 t e r m  in the action, part (ii) is proven. | 

We now summarize what is known about the phase diagram of the 
noncompact model. We say that the "photon is massive" if there is a 
constant m > 0 such that 

I (F(p)  F(p'))E <~ const- e ,,,d(p.,'l 

where d(p, p') is the distance between p and p' and the constants const 
and m are independent of the choice of p and p'. We say that the decay of 
the photon propagator is summable if for any two plaquettes p and p' 

I~F(P.~) F(P') )I < oo 
X E  ~_ d 

Here Px is the translate of p by x. Note that a massive photon implies 
summable decay of the photon propagator. 

We define the Higgs phase to be that region in the parameter space 
{(e 2, v 2, 2)} where the photon is massive, and the Coulomb phase to be the 
region where the photon propagator is not summable (it is generally 
believed that there is no phase with massless but still summable photon 
propagator). Based on the results to be presented below, one qualitatively 
expects a phase diagram as in Fig. 2. 

We first focus on the fixed-length model (2 = oo) and state a conden- 
sed set of results in Theorem 2.2 and Corollary 2.3. The statements are 
visualized in Fig. 3. 
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V 2 -2 
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Coulomb 

(x) 

I 
0 (;o e 2 

Fig. 2. Expected phase diagram in the noncompact model for arbitrary but fixed 2 > 0. We 
conjecture <~b)Landa u = 0  in the Coulomb phase and <~b)Land, . # 0  in the Higgs phase; v~(2) is 
the critical point in the pure 0(2)  symmetric spin model, which is obtained in the limit e 2 = 0. 

V 2 

CO 
~2(co) e 2 

v, 

I 

0 oO e 2 

Fig. 3. Established phase diagram of the noncompact fixed-length model. The Coulomb 
phase and <~b)Land~u=0 are proven in regionI. The Higgs phase is proven in IIa. 
<~b)eanda, ~ 0 is known in IIa and IIb. 
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T h e o r e m  2.2. Consider the noncompact ,  Abelian, fixed-length 
model in d~> 3. 

(i) There is a constant v o > 0 and a bounded function g2(.), strictly 
monotone increasing with ~2(Vo2 ) = 0, such that for e 2 > C 2 ( V 2 )  the photon 
propagator  is not summable and (q~)L,ndau = 0. 

(ii) There are constants e 2 > 0  and v 2 > 0 such that for e2<  e~ and 
2 2 the photon is massive and @)La.dau >0 .  e2/) 2 ~ e 1 V 1 

Corollary 2.3. (v) I f v 2 > v ~ ,  then (~ ) t andau>0  for all e2<e 2. 

Proof of Corollary 2.3. By a correlation inequality, (21t (q5)Landau is a 
decreasing function of e 2. Corollary2.3 follows immediately from 
Theorem 2.2(ii). II 

Remarks. 

1. Theorem 2.2(i) improves earlier results of Ref. 1 3 and will be 
proven in Section 4. 

2. The existence of a massive Higgs phase in this model was announ- 
ced in Ref. 1 and "quasiproven" in Quasi-Theorem 3.20 of Ref. 22. Here it 
is a special case of Theorem 2.5(i) below, which is proven in Section 4. 

3. For  the proof  of SSB in Landau gauge, we refer to Kennedy and 
King (7) (see also Ref. 8). 

Next we turn to the full model with arbitrary finite values of 2. In this 
case the proofs of what is known are either more involved or the results not 
quite as strong. In any case, they have to be differentiated a little bit more. 
We first state the analogue of Theorem 2.2(i), for which we only know the 
following weaker version. 

T h e o r e m  2.4. Let 2 > 0  and d~>3 in the noncompact  model. 

(i) The photon propagator  is not summable, provided e2> g2(~0),(3) 
or v2<v~ and 2 >  2 o for some positive constants vo and 2o .(2) If v 2 is 
negative, the same holds for arbitrary nonnegative values of 2 and e 2 (see 
Section 4). 

(ii) (~)Landau=O, provided c~ (3) or v2<v2(R), where 
v2(2) > 0 is the critical value for SSB in the pure spin model (Ref. 7, same 
proof as for Corollary 2.3). 

Remark. One of course expects that Theorem 2.4(i) holds with v 2 
replaced by v2(2), but there is no proof  so far. 

Now we come to the generalizations of Theorem 2.2(ii) for finite 
values of 2. There are two kinds of cluster expansions available in this case. 
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For large 2 one can use the expansion of Kennedy and King (7) to prove a 
massive Higgs phase (see Section 4). For small 2 one expands about the 
massive Gaussian approximation of perturbation theory, c4) Finally, 
(q~)Landau can be bounded below by its value in the fixed-length model 
with a shifted parameter v due to a correlation inequality of Ref. 7. Accor- 
dingly, we have the following result. 

Theo rem 2.5. Let 2 > 0  and d>~3 in the noncompact model. 

(i) The photon is massive, provided 2>21, eZ<e~, and e v > e ~ v ~  for 
suitable positive constants ),1, v t ,  and e t (for proof see Section 4). 

(ii) The photon is massive for any positive values of a :=2v 2 and 
# = ev, provided 2 is small enough, i.e., 2 < ,~0(G ~t) .(4) 

(iii) (~b)Landau>0 provided e2<e~ and v a > 4 v Z + d / 2 2 .  ~7) 

Theorems 2.4 and 2.5 are summarized in Fig. 4. 
In conclusion, we feel that the phase diagram of the Abelian lattice 

Higgs model with gauge group E is quite well understood. There is a Higgs 
phase with massive photons and a Coulomb phase with massless photons. 
The vacuum expectation value of the Higgs field in Landau gauge seems 
indeed to be a good order parameter for this phase transition, while 
(~b)~=0 in all other c~-gauges and in both phases. 

V 2 
2 gz(co) 

cO ,tztd• 2 

2 
v c (X)  

I b  

o V'o , 

Fig. 4. Established phase diagram of the noncompact model for large but fixed values of 2. 
The Coulomb phase is proven in region Ia, the Higgs phase in region IIa, and <~)L~naau ~a 0 is 
known in IIa +I Ib .  For  small 2 the Coulomb phase is only proven with v~ = 0 and the precise 
shape of region IIa is not known, unless we know the bound 20(~ , ~) in Theorem 2.7(ii) 
explicitely. This is not worked out in Ref. 4, but certainly could be done with some more 
work. 
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3. T H E  C O M P A C T  M O D E L  

Here the gauge group ~ is replaced by U(1), i.e., the Higgs field still 
takes values in C, but the gauge field Axy is an angle Axye [ - ~ ,  ~z). In 
other words, the basic variables are now the so-called parallel transporters 
U+y = exp(iAxy). Consequently, the terms F(p)  2 and (d*A)2(x) are replaced 
by 2 cos F(p) and 2cos(d 'A),  respectively. We have 

1 
inv _ ~A COS F(p) SA-~p 2 

1 +ff ~ I(DA~),+.,+,I2+ ~ vcl~b,+]) (3.1a) 
( r . v ) C A l  ~ E A  0 

1 
S~A ete2 ~ cosCd*A)(x) (3.1b) 

x ~ A 0 

With the same boundary conditions as in Section 2 it is easy to see that 
again {f)m,~ is independent of ~ for gauge-invariant observables in A. 

Let us recall, however, that now, since the range of integration for the 
gauge field A is compact, unnormalized expectations are well defined even 
in the limit ~ - 1 =  0, i.e., without any gauge fixing. 

Compact (Abelian and non-Abelian) Higgs models without gauge 
fixing were studied analytically in the pioneering work of Osterwalder and 
Seiler. ~23) The surprising result was that for s large enough, the Higgs phase 
extends all the way down to v2= - o r ,  provided e 2 is large enough. In this 
limit the radial degree of freedom is frozen to zero and we obtain the 
confinement phase of the U(1) pure gauge model. 4 

The above result implies that in the theory without gauge fixing, 
expectations of local observables depend analytically on 2, e 2, and v 2 in a 
corresponding neighborhood. Hence in this region there is no local, gauge- 
invariant order parameter that could distinguish between a "Higgs 
subregion" and a "confinement subregion." Consequently, one speaks of 
the Higgs/confinement phase. 

For  small 2, however, Monte Carlo data indicate that the situation 
may very well change (for a very nice review and a rather complete list of 
references to all relevant Monte Carlo results, see Jersfik~16)). Indeed, the 
only rigorous result in this case can be taken from Balaban et al., 14) and the 
statement is precisely the same as for the noncompact model [see 
Theorem 2.5(ii)]. In particular, their cluster expansion breaks down in the 
nonperturbative region, where e 2 is large or v 2 small, which is in 

4For 2=ctD (i.e., in the fixed-length model) only v2~>0 has to be considered (by shifting 
A~y -~ A~ + n). The pure U(1) gauge model is then obtained for v 2 = 0. 
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accordance with the numerical evidence for a phase separation between the 
confinement and the Higgs phase at small 2. Summarizing the above 
remarks, we have the following result. 

T h e o r e m  3.1. Let d~> 2 in the compact  model. 

(i) There is a constant 2 o < oo such that for all 2 > 2 o the photon is 
massive, provided e2>E~(v 2) for some bounded, positive function E~(.) 
with E~(oo) = 0/TM 

(ii) The photon is massive for any positive values of a :=2v 2 and 
# := ev provided 2 is small enough, i.e., 2 > 20(a, #).((4/ 

The question of whether or in what sense there is also a massless 
Coulombic phase in this model remains unsettled (except for the limit of 
the pure U(1) gauge model, which in d = 4  is deconfining (2~ and 
massless (2s) for small values of C2). However, there have been very 
interesting proposals and investigations of (ratios of) string observables 
~bxU(Cxy) ~by [U(Cxy) is a product of link variables along some path Cxy 
from x to y] ,  which are related to the existence of charged states (respec- 
tively bound states) between a dynamical and an external charge 
("mesons") and give indeed a hint for a separate "non-Higgs" (Coulom- 
bic?) phase in this model in d =  4 (see Fig. 5). (~7'19) 

We now come to the question of SSB in the gauge-fixed model and try 
to see how the results may fit into the above gauge-invariant description of 

co 

v 2 

r 

I 

e 2 

E) 

v 2 

(z:) e 2 

a) X l a rge  b) X smal l  

Fig. 5. Phase diagram of the compact model in d= 4. (a) For large 2 the Higgs/confinement 
phase is proven in region II. Region I is suggested to be massless and the existence of a phase 
separation line F is widely accepted by those working with Monte Carlo approaches. Only the 
endpoints, however, are rigorously established. (b) For small 2 the Higgs phase is only proven 
in region IIa. Monte Carlo data indicate a separate confinement phase IIb. 
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the phase diagram. We first note that whereas the action SA = S~A nv + S~ had 
a unique minimum (A = 0, ~b = v) in the noncompact case (the remaining 
global symmetry was fixed by our boundary conditions), this is not so in 
the compact one. In fact, it can be seen that these "Gribov copies" are 
related by a certain symmetry of the action of our model: SA is still 
invariant under the following subgroup of gauge transformations 

GribA := { g(- ) = ei~l:  e i~A~x~ = 1 Vx ~ A 0 } 

Note that even though A A)~= 0 implies )~= 0 (we have chosen Dirichlet 
b.c.), ei~A~= 1 does not imply ei~= 1. Indeed, the number of elements of 
GribA is exactly given by det AA. (13'14) In the infinite volume, Grib is even 
continuous and contains the global (i.e., x-independent) gauge transfor- 
mations Glob as a trivial subgroup. 

An important consequence of this symmetry is the fact that not only 
{~b(x))~, but also the two-point function ~q~(x)~b(y))~ is zero for x r y if 
Grib is not broken. Indeed, by invariance under Grib we have for any 
g = e i~ ~ Grib 

Hence, the two-point function vanishes at noncoinciding points if we can 
find for any x r y an element g = e ~ ~ Grib such that g(x)  r g (y ) .  This can 
be achived by choosing )o(x) = ax with suitable a ~ RJ. 

Let us first concentrate on the symmetry Glob and state the analogues 
of Lemma 2.1 and Theorem 2.4(ii) for the compact model: 

T h e o r e m  3.2./~2,13) Consider the compact model with )~>0. 

(i) For c~ > 0 and d~< 4 any Gibbs state (such as characterized by the 
DLR equations (261) is invariant under Glob (in particular, (~b~)~=0) 
independently of e 2, v 2, and 2. 

(ii) Glob is unbroken for vz<v~(2) and any ct~>0, e2~>0, where 
v2(2) > 0 is the critical value for SSB in the pure spin model (e2= 0). 

Theorem 3.2(i) is proven in Ref. 12 (for d = 4 )  and Ref. 13 (for d~<4) 
by a spin wave argument similar to the McBrian-Spencer version (~) of the 
Mermin-Wagner theorem. As in Lemma 2.1, it essentially relies on the fact 
that (A-2)~ x is infrared-divergent for d~<4. Theorem 3.2(ii) is proven by 
the analogue correlation inequality as in the proof of Corollary 2.3. 

Looking at Fig. 5a, we realize that for large 2, Theorem 3.2(ii) has the 
following consequences: Either (~b)L~a~ is not only zero in region I, but 
also in all of region II, and hence not a suitable order parameter for the 
Higgs/confinement phase; or ~)Landau is only zero in region I and the 
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"confinement subregion" (say, corresponding to I Ib  in Fig. 5b) and indeed 
nonzero in the "Higgs subregion" (i.e., for v 2 large enough), as predicted by 
perturbation theory. In this case, however, we would have to face the fact 
that the order parameter  in the gauge-fixed model would indicate a phase 
transition where there is none in terms of local gauge-invariant quantities 
[-Theorem 3.10)]. A similar situation has indeed been proven to occur in 
the 2 2 Higgs model/27) Whether a phase transition indicated by such a 
quantity would be of any physical relevance remains unclear. 

Finally we turn to the symmetry Grib, for which even less is known so 
far. 

T h o o r o m  3.3. Let d~> 2 and 2 > 0 in the compact  model. 

(i) Gib is unbroken independently of 2, v 2, and e 2 if ~ is large 
enough. (12) 

(ii) To any 2 > 0  there exist constants e 2 > 0  and v 2 (v 2 may be 
negative) such that Grib  is unbroken for e2> e 2 and v2< v 2, but indepen- 
dently of c~. 

We remark that by monotonicity properties in e (again due to 
correlation inequalities of Ref. 21) it is enough to prove Theorem 3.3(ii) for 

= 0. This has been done for the fixed-length model in Ref. 13, 
The general case can be handled using similar bounds as in Appen- 

dix B, and will be published elsewhere. 
We conclude this section with conjectural remarks on what might hap- 

pen in Landau gauge (see Fig. 6). Based on Theorem 3.2(ii), we believe that 

v 2 

\ 
~, I I a  \ 

I 

O 2 

Fig. 6. Conjectured phases according to the symmetries Grib and Glob in Landau gauge of 
the compact mode[. We conjecture Grib and Glob to be unbroken in IIb, Grib and Glob to 
be broken in IIa, and Grib to be broken but Glob unbroken in I. 
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Glob is unbroken in the "Coulomb" region I and in some "confinement 
subregion" IIb, which in the case of small 2 might coincide with region IIb 
of Fig. 5b. Motivated by the results of Szlachfinyi, (26) we suggest that Glob 
can be broken in the Higgs subregion IIa even for large values of 2, 
indicating a "fake phase transition," but confirming otherwise the standard 
picture of the Higgs mechanism. 

According to Theorem 3.3(ii), Grib is at least unbroken in the con- 
finement subregion IIb. If Glob is broken in the Higgs subregion IIa, then 
so is G r i b ~ G l o b  (besides, by a correlation inequality <q~(x)~b(y)>>~ 
[ <~b(x)>] 2, hence <~x)Landau ~& 0 implies <~b(x) ~b(y) )Landau ~ 0). Finally, we 
speculate that Grib might also be broken in the "Coulomb" region I, such 
that <%(X)~b(y)>Land~u (for x C y )  could be an order parameter for a 
"deconfinement" transition between IIb and I. 

4. P R O O F S  

4.1. P roo f  of  T h e o r e m  2 .2 ( i )  

To show that the photon propagator is not summable, we use the 
sufficient condition of Ref. 25 (see also Refs. 2 and 3). We prove that for 
arbitrary real-valued one-forms j with finite support and d ' j = 0  (i.e., 
conserved currents) the following inequalities hold: 

(j,A-'j)>~<(e-IA, j) 2)>.6(j,A 'j) (4.1) 

with c5 > 0 provided e2> YZ(v2) for a function y2(.) to be defined below. 
For the upper bound in (4.1) we put v2=0 in the action. By a 

correlation inequality, (2~) this increases the expectation of (A, j)< But now 
the A integral is purely Gaussian and yields (j, A l j). The lower bound 
follows from the more general inequality 

<exp(e IA, j)> ~> exp[16(j, A -lj)] (4.2) 

after rescaling j---, sj and differentiating twice at s = 0 (there are no first- 
order terms in s). To prove (4.2), we first perform a change of variables 
A = A' + eA-l j  in the unnormalized expectation. This gives 

<exp(e 1A, j)> =exp[�89 A ij)] Ec(h(j))/Ec(O ) (4.3) 

with h(j)= eA-l j  and 

<-~y > 
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Here dllc(A) is the Gaussian measure with covariance 

C = ee[d*d+ (l/c0 dd*] -1 

Now we use a correlation inequality very similar to those of Ref. 21, which 
is proven in Ref. 13. 

k o m m a  4.1. Ec(h)/Ec(O) is monotone increasing in C. 
On the unit lattice we have A ~< 4d and hence 

Ec(h)/Ec(O) >1 Ee(h)/Ee(O) (4.4) 

with 

:= (e2/4d)(d*A ~d+ ~dA ld*) <~ C (4.5) 

We are free to choose c~= 1 here (i.e., Feynman gauge), since we are 
considering a gauge-invariant expectation value. This gives C = e2/4d and 
hence 

with 
{e2~\ ~/2 + ~ /2d  2 \ 2 

exp[ s (O) ] : [x~d- )  f ~o d A e x p ~ - ~ A  ) e x p [ v  c o s ( A + 0 ) ]  

We see that Ee(h)/Ee(O) is a disorder parameter in a plane rotator model 
with nearest neighbor couplings described by the action a((px-~py). This 
action interpolates between the Villain action with temperature e2/4d 
(v 2 = oo) and the usual action of the standard X Y  model with temperature 
v-2 (e 2 = 0). If e 2 is large enough or v 2 is small enough, the plane rotator is 
in its high-temperature phase. By Fourier transformation we get an order 
parameter in a gas of closed loops ("defects") at low temperature. We write 

e~2c~176 E e inOIn(V2 ) 
n f f Z  

where /,, are the modified Bessel functions. Executing the Gaussian d 
integral, we obtain 

E~(h) = Y Dqo ~ expEi(h - d~p, nl )] 
r t l : A  1 ~ 

x [ I  { e x p [ -  (e2/Sd) nl(xy)2]In.xvl(v 2) 

where the sum is over all integer-valued one-forms nl. 
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The ~o integration now gives the constraint d'n l= 0 and we arrive at 

E e ( h ) =  ~ exp[i(nl ,  h)]  [ I  {exp[-(e2/Sd) n~(xY) 2]} I~,(xy)(v2) (4.6) 
d*nl -- 0 ( x y  ) 

Now we can use the methods of Guth  (2~ [who had arrived at this model 
with v2= o% starting from a Wilson loop expectation in the pure U(1) 
gauge model]  in the version of Seller (22) to show (see Appendix A) the 
following result: 

k e m m a  4.2. To every 6 < 1 there is a constant M > 0 such that for 
all e 2 and v 2 with 

E e (e2n2/8d)In(v2)/Io(V2) < e M (4.7a) 
n E Z  
n~-O 

we have 

< 1 - 6  
lim Lln Ee(h)-ln Ee(O)j (dh, dh) 

A / 2 d 2 e  2 

Combining (4.3), (4.4), and Lemma 4.2, we get the desired result: 

<exp(e 1A, j))>~exp[�89 l j ) ]  

provided e 2 > g2(v2, M), where g2(122,  M) is the solution of 

e - ~,2,,2/8a z ) " ~u (4.7b) I,,(v ) / I o ( v - )  = e 
n ~ Z  
n=~O 

Next we prove (~b)Landau = 0 by a similar technique. First we note that in 
any c~-gauge, (~b.~)~ increases if we replace the covariance C in the 
Gaussian A-measure by C" given in (4.5) (due to correlation inequalities of 
Ref. 21). In the fixed-length model we may write qt x = v e  i(v''ql with q ( . ) =  
6x( ' )  and after the same Fourier transformation as before we arrive at 

with 

<(ax >I.a.dau <~ vZ(q)/Z(O) (4.8) 

(?2 

Z(q)=~exp--~(nld*A ] dnl) 
n I 

x l-I I.~lxy)(vz) f D~o exp[-i(&o, nl) ] exp[i(qo, q)] 
<xy> 

822/47/5-6-19 
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where we have put e = 0 in C. Now the q~ integration gives the constraint 
d*nl = q, yielding 

e 2 

Z(q) = exp 8-d (q' A -lq) Z(q) (4.9) 

with 

2(q) = {E ( 2)1 } _ _  2 i,,,(xy)(v 2) Z I~ exp ~-~n .... 
d * n l  = q ( . v y  ) 

where we have used d*A ld= ~ - d A  ld*. 
Hence 2(q)/Z(0) is a disorder parameter in the same gas of closed 

loops as before. By inverse Fourier transformation we come back to the 
expectation of the order parameter e i&~ =. e ie-" in the above plane rotator 
model: 

,,q, q,,i xp ? 1 
Defining p(O) according to 

e'(~ = lo(v2)[ 1 + p(0)] 

one can do a standard high-temperature cluster expansion. (22'28) If 
][sl] oo < e M with M large enough, this expansion converges absolutely and 
uniformly in A. Thus, the thermodynamic limit exists and is independent of 
boundary conditions. Using free boundary conditions, we conclude that 

lim 2(q)/2(0) = 0 (4.10) 
A ~ Z  d 

whenever ~x  q(x ) r  Combining (4.8) (4.10) with the identity 

p(O) = E einO e e2n2/8dln(vZ)/Io(V2 ) 

n ~ Z  
n r  

and the fact that in d>~ 3, (q, A lq) < 0% we have proven that 

lim ( ~ . v ) L a n d a u  = 0 
A ~ d  

provided e 2 > Y(v 2, M) with M large enough, where y2(. ) is defined in (4.7). 
Finally, we discuss the shape of ~2(., M). Since In(v2)/Io(v 2) is strictly 

monotone increasing, it is clear that the same holds for y2(., M). The 
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boundedness of y2(., M) following since In(V2)/Io(U 2) ~ 1 as u 2~- oo and 
~2(v2, M ) =  0, where v 2 is the solution of 

I,,(v2)/Io(v~) = e M | 
n # O  

4.2. Proof  of  Theorem 2.4(i)  for  v 2 < 0  

In this section we combine the methods of Ref. 2 with correlation 
inequalities and random walk expansions to show that the photon 
propagator is not summable for arbitrary e 2 > 0 and 2 > 0, provided v 2 < 0. 

We first note that it is enough (see Section4.1) to show that for 
arbitrary real-valued l-forms j with d*j = 0 

((A,j)2)A>/~a(j ,  A lj) A (4.11) 

with a constant ~ 2 >  0 independent of A and j. Due to the correlation 
inequalities of Ref. 20, the expectation value of (A, j)2 falls if the potential 
V(~b) = 2(f~b[ 2 - v2) 2 is replaced by 

V'(~b) = �89 I~bl 2 (4.12) 

with m2= --22V 2. Therefore it is enough to show (4.11) for the model with 
potential V'. 

For this model, however, the bound (4.11) is an immediate con- 
sequence of the results of Ref. 2 and the random walk expansion for 
det(A A + m2), where AA is the covariant Laplacian: Let 

S~ff(A ) = --log ZA(A) 

ZAA)=fDAOexp ---~-~ 1~12--~ Y, I(D~)x~l 2 
�9 x < x y  ) 

Then, by standard methods from the theory of random walks (see, e.g., 
Ref. 29) 

S ~ ' ( A ) = c o n s t -  ~,~ ~ ] \ m Z + 2 d  ] cos b~ Ab 

leo[ ~ 0 

(4.13) 

where the constant is independent of A. The sum goes over closed random 
walks in A, i.e., finite sequences 

(o=(<xly l ) , . . . ,  <x,,y,,)) 
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of n.n. pairs in A~ such that y~= x~+~ and x~ = y , .  Here ]co t is the number 
of steps n of co and Zb~,~ Ab is a symbolic notation for ~7= 1 A~,y. The sum 
(4.13) is absolutely convergent and even obeys the stronger convergence 
condition 

< oo (4.14) 
c o : b  ~ ~ 

for a suitably chosen constant e > 0 which is independent of A and the par- 
ticular bond b~A~. Due to (4.13) and (4.14), we can use Theorem 2.1 from 
Ref. 2 to get (4.11) for the model with potential V'. | 

4.3.  P r o o f  o f  T h e o r e m  2 .5 ( i ) .  We consider observables f 
depending only on the electromagnetic field dA and apply the transfor- 
mation of Balaban et al.(4): 

<f)~ =z~(f)/zA(1) 

with 

(1 ) ZA(f )  = f d#A(A) dvA(R) ~ exp - ~ e  2 [IdA + n2[[ 2 
n2 : A 2  ~ 2 = 2  

dn2  = 0 

(4.15) 

The normalized a priori measures are given by 

d~A(A) = I~ Nl(~2)- l [exp(~ 2 cos A~.) ZE . . . .  )(Axy) dAxy 
( x v ) e A l  

x ~ A o  

with suitable normalization constants N~, N2 and ~2= v 2 d / 2 2 .  Here 
)~Ea,b) is the characteristic function of [a, b). The sum in (4.15) is over all 
2-forms with values in 2~Z which obey the "Bianchi identity" dE/2 =0.  
Relation (4.15) is obtained by first performing a change of variables 
A~y+ ~gy--~o~=A" u and then splitting the noncompact  integral over A' 
into a compact one (i.e., from - =  to ~) and a sum over 1-forms with 
values in 2~Z, 

dAb tp(Ab) = ~ dAb tfi(A b + nx) 
oo n l ( b ) ~ 2 ~ Z  r~ 
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for any bond  b and integrable function r Then one rearranges the sum 
over nx according to 5 

Z = Z E 
n I n 2 : d n 2 = O  n l : d n l ~ n  2 

Now, for fixed n 2, the sum over gauge-equivalent  configurat ions n~ with 
dr/1 = n  2 combined with the angular  integrat ion over (p factorizes and 
cancels out  (see Ref. 4 for details). Hence, the gauge-fixing term disappears 
and we arrive at (4.15) (one might  call this the "uni tary gauge" for the 
noncompac t  model).  

To derive a polymer  expansion for the unnormal ized expectation 
ZA(f) , we put p ,  = exp(Sp + Sp) - 1 with 

1 
Sp-  2e 2 [(dA)(p)Z + 2n2(p)dA(p)] 

1 - y, 
S" 2 ( d -  1) <x,>~,> 

(RxR,.-  17 2) cos A ~. 

(4.16) 

This gives 

z (f) = G ( e ,  / )  
B m A 2  n 2 : d n 2 = O  

with 

kA(B, n2, f )= exp - ~ f e 2  , _ 

x f d#A(A) dvA(R) f(dA + n2) ~[ pp 
p e B  

We now gather all B and n2 such that  F :=  B w supp n 2 is fixed: 

ZA(f) = ~ ~ kA(B, n 2, f )  (4.17) 
F ~ A  2 B,  n 2 : d n 2 = O  " 

B u s u p p  n 2 = / "  

Next we decompose  F into polymers:  Ordinary polymers are non-  
empty, connected subsets 7 c A 2  and f -po lymers  are either empty or  a 
union of ordinary polymers,  each of which is connected to the "space-time" 

5 We always work with rectangular open boxes such that the vth cohomology is trivial for 
O<~v~d-l. 
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support of f .  Here we call plaquettes connected if they join a common 
corner or if they are faces of a common cube. The "space-time"support o f f  
is the minimal set P c  A2 such that f does not depend on F(p) = - (dA)(p) 
for p r P. Dividing each F in (4.17) into a maximal f-polymer E r c  F and 
the connectivity components ? ~ conn(F\Ff) of F\Ff,  we get 

with 

ZA( f )= ~ ZA(Ff, f )  [I ZA(7) (4.18) 
F c  A 2 ? E c o n n ( F \ F f )  

ZA(7, f ) =  ~ ~ kA(B, nz , f )  
B d n 2 - - O  

B ~ s u p p  n 2 = 7 

and ZA(7)= ZA(~) , 1). Using the usual techniques of Mayer expansions for 
polymer systems, (22'28) one now obtains 

~c(7o ..... ( f ) A  = ~, ~ f  2 n! 7")zA(Y~ ~ ZA(y,) (4.19) 
r t = O  YO 71,-.-,?n i - -  l 

where the second sum is over f-polymers and the third one over ordinary 
polymers. ~bc(7o,...,7,,) is a combinatoric coefficient, which is zero if 
?oW.--wT, ,  is not an f-polymer. In AppendixB we prove absolute 
convergence of (4.19) for polynomially bounded observables f,  provided 
2> 21, e 2 <e 2, ev >elv~ with suitable positive constants el, vl, 2~ which 
only depend on the space-time dimension d. 

The exponential decay of the photon propgator now follows by stan- 
dard arguments. First note that for observables f(dA) with f ( - d A ) =  
- f (dA)  we immediately have ZA(V,f)=O for all f polymers 7. Let now 

f l  = (dA)(p~), f2 = (dA)(Pz), and f =f~f2. Then 

ZA(7, f )  = ZA(7,, f l )  2A(72, f2) = 0 

whenever 7 contains no connected component that is connected to p~ and 
to P2 (7i is the union of those components of 7 that are connected to pi). 
Therefore the cluster expansion for the photon propagator contains only 
f-polymers, whose size is at least as large as the distance between PI and 
P2. Since the activity of a polymer falls off exponentially with its size, this 
proves the exponential decay of (dA(pl)dA(p2)).  | 

A P P E N D I X  A 

In this Appendix we prove Lemma 4.2, using the methods of Seller (22) 
for his proof of Guth's theorem. (2~ We start with a standard low- 
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temperature cluster expansion for log[Ec, A(h)] with EC, A(h ) given in the 
form (4.6). To this end we first sum over all n, with a given support  F and 
d*n~ = 0 and then over all sets F c A l. This gives 

Ee, A(h)=[l+~, [I {(7, h)]Io(v 2) 
~ F ~ A I  y ~ c o r m / -  

where conn(F)  are the usual conectivity components  (i.e., two bonds are 
connected if they have a common endpoint 6 and the activities ~A are given 
by 

with 

~ A ( ) ) ' h ) =  E c i ( n l ' ] l )  H / 5 ( n  1 ( X Y ) )  

1li : s u p p  ;11 = y ( x y )  �9 7 
d * n l  = 0 on A0 

~(n) = e ~'2/8a)~2 I n ( p 2 ) / l o ( V  2) (A.1) 

Under the condition of Lemma 4.2, we have 

L~A(~',h)I < e  Ml~l 

and hence for M large enough, the Mayer expansion for log Ec, A(h) 
converges. Doing the same thing for h = 0, we obtain 

log Ee,A(h) - log Ee,A(0) 

n = 1 Yl,-..,Tn 1 i =  1 
y ~ c A  

Now to each n l with d*nl = 0 there exists an integer-valued two-form 
n2(nl) with d*n2(nl)=nl such that the support  of n2(nl) is contained 
within the smallest rectangular box containing supp n 1.(2) Writing 

o i ( n l ,  tl) = c i (n2(n l  ),dh ) 

and using the estimates of Seiler, r we conclude that to every e > 0 there 
exists a constant K(e) such that 

lim IlogEe, m(h)--logEe, A(O)]<~(dh, dh)K(e)S(e;e2, v 2) (A.2) 
A / ' Z  d 

with 

S(e ;  e 2, v 2 ) = y ,  n! 
n = 1 Yi ,...,Tn i = 1 

b ~ y l U  . . .  ~oy n 

6 W e  use the fact  t ha t  for  a n  i n t ege r -va lued  1- form n I = j + k wi th  s u p p  j a n d  s u p p  k d i scon-  
nec ted  d*n I = 0  implies  d ' j =  0 a n d  d*k  = O. 
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Here 

~(7, O) = lim ~A(7, O) 
A ~ d  

and the sum is over all n-tuples of polymers of the infinite lattice such that 
an arbitrary but fixed bond b is contained in at least one of them. By 
standard estimates for Mayer expansions (='28) there exist constants mo > 0 
and K 0 > 0 such that for all m >/mo 

S(g; e 2,/9 2) ~< Ko e-m (A.3) 

provided [{(~, 0)1 e ~lyj ~< e-mlr( This is achieved by choosing e 2 and v 2 such 
that the condition (4.7a) of Lemma 4.2 holds, i.e., 

n ~ Z  
nva0  

where/5 is given in (A.1). The desired result follows from the next lemma. 

k e m m a  A.1.  To any constant K1 > 0 there exists MI(K1)> 0 such 
that for all e and v the condition (4.7) with M =  M~(K~), i.e., 

Z P(n)  ~ e - M l ( K l )  
lzG ~- 
n~-O 

implies 

ProoL 

jd(n) <<. K je  2 
n~Z 
n#-O 

Choose e~ such that 

e x p ( -  e2n2/8d) ~ Kl/e 2 
nr 

for all e ~ > e  2 and put MI(K1):=ln(e~/K1). LemmaA.1 follows since 
IIn(v2)/Io(v2)[ ~ 1. | 

Given e >  0 and K, = (1 -5 ) /2KoK(e ) ,  whoose now in (4.7) 

M : = m a x { m 0 +  e, MI (KI )  + e} 

The condition (4.7) then implies I{(Y, 0)] e <yl ~ e  mt'et with 

e m ~ min{e "% (1 -- ~5)/2KoK(e)e 2} 
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by Lemma A.l. Using the bounds (A.2) and (A.3), we conclude 

lim [logEe, A(h) 1ogE&A(0)] <<.l~ (dh, dh) | 
A 2' Z d .~.e 
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A P P E N D I X  B. C O N V E R G E N C E  OF THE CLUSTER 
E X P A N S I O N  (4.19)  

In this Appendix we combine the methods of Refs. 7 and 23 to prove 
the following result. 

L e m m a  B.1. Ve>0  there are finite positive constants el, 21, and vl 
depending only on the dimension d and on e, such that for ve>~ v te~, 
e2 ~<e~, 2 > ) q ,  

with 

[ZA(7, f)b <~ Ke,(f)e '71 

{ [ '  ]} K,.,(f) :=supA.,2 exp - 8e~ (n2, n2) If(dA 

(B.1) 

+n~)l 

which implies absolute convergence of the cluster expansion (4.19) for a 
large class of observables (including those that are polynomially bounded), 
provided v2e: and 2 are large enough and e 2 is small enough. 

To prove Lemma B.1, we recall the definition of zA(7, f), 

with 

ZA(7, f )=  ~ kA(B, nz,f) (B.2) 
B.n2 :tin2 ~ 0 

s u p p  n 2  t J  B = y 

kA(B, n2, f )=  {exp [ -  l~e 2(n2,n2)l}@dA+n2)p~B~I PPt [ 

where < .5o  denotes expectations with respect to the measure 
@A(A) dvA(R) and pp is of the form 

pp = exp[Sp(A, n2) + Sp(A, R)]  1 

Let IIllp denote the p-norm with respect to dpx(A)dvA(R ) and let 
fn2(dA) :=f(dA + n2). Using H61der's inequality, one can bound {note that 
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if B~,..., B k are disjoint sets with B =  B 1 w . . -  kJ Bk. Since there are not 
more than r = 2d(d-  1) plaquettes containing a given site, it is possible to 
decompose A2 into r disjoint sets A~,..., A~ such that A~ is completely 
disconnected (i.e., p and p' e A~ have no common corner unless p =  p'). 
But then pp and pp, have no common variable if p, p' 6A~ and p ~ p'. 
Therefore, by choosing k =  r and B~= Bc~ A~, we get 

{ I 1} IkA(B, n2, f ) l  ~< exp - ~ (n2, n2) K~(f) lq I]Ppllr (B.3) 
p E B  

Next we bound 

Ilppltr = lie x p + ~ -  l llr 

]l e ~ ' -  l i l t+  I/e~'l12, lie s ~ -  lll2r 

= Î ' Spe'Spdt + []eSpll2rl[eSp-1]12r 
r 

<~ Iler~P~ll2r(llSpll2r + lie s~- 1[12,) 

where we have used H61der's inequality again. Notice that 

(B.4) 

1 I J 
S P  ~<2(d- 1) <xv>cap 

1 
][] (~ IRx- -~I+~IRv- -~I+IR~- -~I IR , - -g l )  

~< 2 ( d -  1) ( x . v ) e O p  

1 
1 Y, ( 2 ~ l e x - ~ l  + I/x-~712) 

~<2(d- )~C(pl 

1 
~<2(d- 1)x~C~p) 3 R 2-~21 

where we have used that 

]Rx-  vl tRy -  vl ~ ( IRx-  vl 2+ IR~- vl2)/2 

in the third inequality and the fact that f and I~-Rx] are bounded by 
g+  Rx in the last one. C(p) denotes the corners of p. 

Hence we can bound 

IlexptSpl 1!2r~ I~ 
x ~ C ( p )  

where K = (2r) x 3 /2 (d -  1 ). 

Ilexp(KINx -- ~521 )PJ I/2r 
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By elementary estimates one gets 

IlR2-g2ll2r~-~[2f+~o x27exp(-x2) dx] ]/2r 

2 ~,+o~ 
Ilexp(KI R2 - v2l )1el ~ < -  e x p ( K l x l / 2 )  exp( - x  2) d x  ,/;Loo 

~< - -  exp(Klxl ) exp( - x 2) 

where in the last step we have assumed 2 ~> 1. We thus have proven the 
existence of a constant K~ depending only on the space-time dimension d, 
such that for all 2 ~> 1 

IlSpll2r ~ f~2  1/2r ilel~pllj2r ~< K1 (g.5) 

To bound IleSp- lll2r, we use the results of Ref. 7, Section5, which 
imply the existence of a constant K2 depending on d, such that for e217 e ~> 1 

lie sp - I II 2~ <~ K2/e2g2 (B.6) 

if n2(p) = 0 and 

n2(p) 2 
lie s p - l l l 2 r ~ < K 2 e x p  4e 2 (B.7) 

if n2(p) r 0. 
Now (B.2)-(B.7) clearly imply the desired inequality (B.1), provided 

~2e2>~ ~2(e)e2(e), e 2 ~<e~(e), 2 ~< 21(e), with suitable constants ~2(e), e2(e), 
)q(e). To complete the proof of LemmaB.1, we define v2(e):= 
O2(e) + (d/2)21(~) and note that with this definition 

V2e2> vle1,2 2 2>21 , e2<~e 2 

imply 

~2e ~/>~e~ I 
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